Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Parasitol Res ; 123(4): 185, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632113

RESUMO

Leishmania braziliensis (L. braziliensis) causes cutaneous leishmaniasis (CL) in the New World. The costs and the side effects of current treatments render imperative the development of new therapies that are affordable and easy to administer. Topical treatment would be the ideal option for the treatment of CL. This underscores the urgent need for affordable and effective treatments, with natural compounds being explored as potential solutions. The alkaloid piperine (PIP), the polyphenol curcumin (CUR), and the flavonoid quercetin (QUE), known for their diverse biological properties, are promising candidates to address these parasitic diseases. Initially, the in vitro cytotoxicity activity of the compounds was evaluated using U-937 cells, followed by the assessment of the leishmanicidal activity of these compounds against amastigotes of L. braziliensis. Subsequently, a golden hamster model with stationary-phase L. braziliensis promastigote infections was employed. Once the ulcer appeared, hamsters were treated with QUE, PIP, or CUR formulations and compared to the control group treated with meglumine antimoniate administered intralesionally. We observed that the three organic compounds showed high in vitro leishmanicidal activity with effective concentrations of less than 50 mM, with PIP having the highest activity at a concentration of 8 mM. None of the compounds showed cytotoxic activity for U937 macrophages with values between 500 and 700 mM. In vivo, topical treatment with QUE daily for 15 days produced cured in 100% of hamsters while the effectiveness of CUR and PIP was 83% and 67%, respectively. No failures were observed with QUE. Collectively, our data suggest that topical formulations mainly for QUE but also for CUR and PIP could be a promising topical treatment for CL. Not only the ease of obtaining or synthesizing the organic compounds evaluated in this work but also their commercial availability eliminates one of the most important barriers or bottlenecks in drug development, thus facilitating the roadmap for the development of a topical drug for the management of CL caused by L. braziliensis.


Assuntos
Alcaloides , Antiprotozoários , Benzodioxóis , Curcumina , Leishmania braziliensis , Leishmaniose Cutânea , Piperidinas , Alcamidas Poli-Insaturadas , Cricetinae , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Curcumina/farmacologia , Leishmaniose Cutânea/parasitologia , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Mesocricetus , Antiprotozoários/farmacologia
2.
Pharmaceutics ; 15(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986723

RESUMO

Polyphenols comprise a number of natural substances, such as flavonoids, that show interesting biological effects. Among these substances is naringin, a naturally occurring flavanone glycoside found in citrus fruits and Chinese medicinal herbs. Several studies have shown that naringin has numerous biological properties, including cardioprotective, cholesterol-lowering, anti-Alzheimer's, nephroprotective, antiageing, antihyperglycemic, antiosteoporotic and gastroprotective, anti-inflammatory, antioxidant, antiapoptotic, anticancer and antiulcer effects. Despite its multiple benefits, the clinical application of naringin is severely restricted due to its susceptibility to oxidation, poor water solubility, and dissolution rate. In addition, naringin shows instability at acidic pH, is enzymatically metabolized by ß-glycosidase in the stomach and is degraded in the bloodstream when administered intravenously. These limitations, however, have been overcome thanks to the development of naringin nanoformulations. This review summarizes recent research carried out on strategies designed to improve naringin's bioactivity for potential therapeutic applications.

3.
Pharmaceuticals (Basel) ; 11(2)2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772761

RESUMO

Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa, methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water soluble Na-ibuprofen (IBU-Na) and ionic strength. Salt concentrations above 0.5 M modify the zeta potential promoting the action of Na-IBU; thus, with 1 M sodium chloride, IBU-Na is ten times more efficient than in the absence of ionic strength, and the minimum effective contact time is reduced from hours to minutes. In short time periods, where neither IBU-Na nor controls with 1 M NaCl show activity, the combination of both leads to a reduction in the bacterial load. We also analyzed whether the changes caused by salt on the bacterial membrane also promoted the activity of other microbicide compounds used in cystic fibrosis like gentamicin, tobramycin and phosphomycin. The results show that the presence of ionic strength only enhanced the bactericidal activity of the amphipathic molecule of IBU-Na. In this respect, the effect of saline concentration was also reflected in the surface properties of IBU-Na, where, in addition to the clear differences observed between 145 mM and 1 M, singular behaviors were also found, different in each condition. The combination of anti-inflammatory activity and this improved bactericidal effect of Na-IBU in hypertonic solution provides a new alternative for the treatment of respiratory infections of fibrotic patients based on known and widely used compounds.

4.
J Pharm Sci ; 105(1): 268-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26852858

RESUMO

Efficiency of mono-sialogangliosides to load Paclitaxel (Ptx) has recently been found to depend on the structure of the polysaccharide chain. In this study, we demonstrated that incorporation of only one more sialic acid into the ganglioside molecule, independently of its position, causes a 4-fold increase in Ptx-loading capacity, the maximum being at a 5:1 molar ratio (di-sialoganglioside/Paclitaxel, GD/Ptx). These complexes are stable in solution for at least 3 months, and over 90% of Ptx remains loaded in the micelles after extreme stress conditions such as high-speed centrifugation, lyophilization, or freeze-thaw cycles. Ganglioside micelles protect 50% of the initially loaded Ptx from alkaline hydrolysis after 24 h at pH 10. Dynamic light scattering studies revealed that GD micelles increase their size from 9 to 12 nm when loaded with Ptx. Transmission electron microscopy shows a homogeneous population of spherical micelles either with or without Ptx. In vitro biological activity was similar to that of the free drug. These results provide further options of self-assembled nanostructures of di- and tri-sialogangliosides with a higher loading capacity.


Assuntos
Antineoplásicos Fitogênicos/química , Gangliosídeos/química , Paclitaxel/química , Antineoplásicos Fitogênicos/efeitos adversos , Linhagem Celular Tumoral , Centrifugação , Desenho de Fármacos , Estabilidade de Medicamentos , Excipientes , Liofilização , Congelamento , Hemólise/efeitos dos fármacos , Humanos , Hidrólise , Técnicas In Vitro , Micelas , Paclitaxel/efeitos adversos , Tamanho da Partícula , Solubilidade
5.
Int J Nanomedicine ; 10: 3377-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26005348

RESUMO

Doxorubicin (Dox) is an anthracycline anticancer drug with high water solubility, whose use is limited primarily due to significant side effects. In this study it is shown that Dox interacts with monosialoglycosphingolipid (GM1) ganglioside micelles primarily through hydrophobic interactions independent of pH and ionic strength. In addition, Dox can be incorporated even into GM1 micelles already containing highly hydrophobic paclitaxel (Ptx). However, it was not possible to incorporate Ptx into Dox-containing GM1 micelles, suggesting that Dox could be occupying a more external position in the micelles. This result is in agreement with a higher hydrolysis of Dox than of Ptx when micelles were incubated at alkaline pH. The loading of Dox into GM1 micelles was observed over a broad range of temperature (4°C-55°C). Furthermore, Dox-loaded micelles were stable in aqueous solutions exhibiting no aggregation or precipitation for up to 2 months when kept at 4°C-25°C and even after freeze-thawing cycles. Upon exposure to blood components, Dox-containing micelles were observed to interact with human serum albumin. However, the amount of human serum albumin that ended up being associated to the micelles was inversely related to the amount of Dox, suggesting that both could share their binding sites. In vitro studies on Hep2 cells showed that the cellular uptake and cytotoxic activity of Dox and Ptx from the micellar complexes were similar to those of the free form of these drugs, even when the micelle was covered with albumin. These results support the idea of the existence of different nano-domains in a single micelle and the fact that this micellar model could be used as a platform for loading and delivering hydrophobic and hydrophilic active pharmaceutical ingredients.


Assuntos
Doxorrubicina/química , Gangliosídeo G(M1)/química , Paclitaxel/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Estabilidade de Medicamentos , Células Hep G2/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Micelas , Concentração Osmolar , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Albumina Sérica/química , Solubilidade
6.
Curr Drug Deliv ; 12(4): 406-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25772153

RESUMO

In this work a thorough characterization of the GM1 micelle-Amphotericin B (AmB) interaction was performed. The micelle formation as well as the drug loading occurs spontaneously, although influenced by the physicochemical conditions, pH and temperature. The chromatographic profile of GM1-AmB complexes at different molar ratios shows the existence of two populations. The differential absorbance of GM1, monomeric and aggregate AmB, allowed us to discriminate the presence of all of them in both fractions. Thus, we noted that at higher proportion of AmB in the complex, increases the larger population which is composed mainly of aggregated AmB. The physical behavior of these micelles shows that both GM1- AmB complexes were stable in solution for at least 30 days. However upon freeze-thawing or lyophilization-solubilization cycles, only the smallest population, enriched in monomeric AmB, showed a complete solubilization. In vitro, GM1-AmB micelles were significantly less toxic on cultured cells than other commercial micellar formulations as Fungizone, but had a similar behavior to liposomal formulations as Ambisome. Regarding the antifungal activity of the new formulation, it was very similar to that of other formulations. The characterization of these GM1-AmB complexes is discussed as a potential new formulation able to improve the antifungal therapeutic efficiency of AmB.


Assuntos
Anfotericina B/química , Antifúngicos/química , Portadores de Fármacos , Gangliosídeo G(M1)/química , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Chlorocebus aethiops , Liofilização , Gangliosídeo G(M1)/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Micelas , Testes de Sensibilidade Microbiana , Solubilidade , Tecnologia Farmacêutica/métodos , Temperatura , Células Vero
7.
J Control Release ; 162(3): 619-27, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22877735

RESUMO

We demonstrate herein that taxanes (paclitaxel (Ptx) and docetaxel (Dtx)) can be spontaneously loaded into ganglioside nanomicelles. The efficiency of gangliosides to solubilize taxanes was highly dependent on their self-aggregating structure. Thus, GM3 that forms unilamellar vesicles was less efficient to solubilize taxanes than gangliosides that form micelles (i.e. GM1 and GM2). Sialic acid cyclization of GM1 by acid treatment led to an important reduction in its capacity to solubilize taxanes, as also did the replacement of the fatty acid of ceramide by a dicholoracetyl group. Water solubility of paclitaxel (Ptx) is less than 1 µg mL⁻¹ and increased up to 6.3mg.mL⁻¹ upon its association with GM1 micelles. The incorporation of Ptx in GM1 reached an optimum at GM1/Ptx 20/1 molar ratio when performed at room temperature. An increase in the solubilization capacity of GM1 micelles was observed upon dehydration of their polar head group by pre-treatment at 55 °C. Loading of Ptx into the micelle induced a structural reorganization that led to an important protection of Ptx reducing its hydrolysis at alkaline pH. Diffusion of either GM1 or Ptx was restricted upon mixed-micelle formation indicating that they are kinetically more stable than pure ganglioside micelles. X-ray powder diffraction of lyophilized GM1 micelles with Ptx showed a change in their internal structure from a crystalline state to completely amorphous. Taxane-ganglioside mixed micelles were stable in solution for at least 4months and also upon freeze-thawing or lyophilization-solubilization cycles. Upon mixing with human blood constituents, GM1/Ptx micelles did not induce hemolysis or platelet aggregation and were spontaneously covered with human serum albumin (HSA), which could aid in the delivery of micellar content to tumors. In vitro antimitotic activity of GM1/Ptx mixed micelles was qualitatively equivalent to that of free drug in DMSO solution.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Gangliosídeos/química , Micelas , Paclitaxel/química , Taxoides/química , Antineoplásicos/administração & dosagem , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Células Cultivadas , Docetaxel , Portadores de Fármacos/administração & dosagem , Estabilidade de Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Gangliosídeos/administração & dosagem , Hemólise , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Paclitaxel/administração & dosagem , Agregação Plaquetária , Solubilidade , Taxoides/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA